EU

UN (Compressed)	1066
UN (Refrigerated liquid)	1977
CAS	7727-37-9

231-783-9

DOT Class 2.2

	Pureza I	Mínima			Impu	rezas má	ximas (*)	(1)		
Grado	%	Grado	02	H2O	THC	CO	CO2	H2	NOx	SO2
Investigación Avanzada	99.9999	6.0	0.2	0.2	0.1	0.3	0.1			
Investigación	99.9997	5.7	0.5	0.5	0.2	0.5	0.5	2		
CEM (2)	99.9995	5.5			0.1	0.5	1		0.1	0.1
Semiconductor (3)	99.9993	5.3	1	1	0.5	1 (4)	1 (4)			
Vehicle Emis. Part 1065	99.999	5.0	2		0.05	1	10		0.02	
Carrier Ultra Puro UPC	99.9993	5.3	1	1	0.5	1 (4)	1 (4)			
Ultra Alta Pureza UHP	99.999	5.0	1	1	0.5	1 (4)	1 (4)			
Laser+ Ultra (5)	99.999	5.0	1	2	0.5					
Laser+ (5)	99.998	4.8		5	1					
Laser (5)	99.999	5.0	1	1	0.5					
Cero	99.998	4.8	4	3	0.5					
Alta Pureza/Alta Presión	99.998	4.8	5	3						

^(*) Las concentraciones de impurezas estan dadas en ppm por volumen a menos que se especifique lo contrario.

	Info	rmación pa	ra la Orde	n de Comp	ora	Equipos Recomen	dados (6)
Producto Grado	Tipo	Contenido	Tipo de	Código	Presión	Reguladores	Presión de
	Cilindro	(m ³)	Válvula	Producto	llenado 15°C		salida
			CGA		(psig)		(psig)
	300	8.6	580	NI RP300	2640		
	200	6.7	580	NI RP200	2200		
Investigación Avanzada	80	2.6	580	NI RP80	2200	Reg. Una Etapa	
investigacion Avanzaua	35	1.0	580	NI RP35	2200	Y11-N245(*) 580	
						Y11-244(*) 580	A: 0-25
	Certificado de	e análisis inclu	ido.			Y11-T265(*) 580	B: 0-50
	300	8.6	580	NI R300	2640		D: 0-100
	200	6.7	580	NI R200	2200	Reg. Dos Etapas	

⁽¹⁾ Impurezas de Ar por debajo de las 100 ppb.

⁽²⁾ CEM: Continuous Emissions Monitoring - Cumple con 40 CFR Parte 72.2

⁽³⁾ En el N2 grado semiconductor, la Válvula del cilindro es de bronce con conexión CGA estándar. Los cilindros se pueden entregarse con válvula de acero inoxidable o DISS, y el regulador adecuado a pedido.

⁽⁴⁾ La combinación de CO y CO2 no excede 1 ppm.

⁽⁵⁾ Los detalles del gas Laser revíselo en Aplicaciones de Gases.

Investigación	80	2.6	580	NI R80	2200	Y12-N245(*) 580	
ilivestigacion	35	1.0	580	NI R35	2200	Y12-T265(*) 580	
]	
	Certificado d	e análisis inclu	ido.			_	
	300	8.6	580	NI SM300	2,640		
Semiconductor	200	6.7	580	NI SM200	2,200	(*) Aquí ingresar el rango	
	Certificado d	e análisis indiv	idual o por l	otes a pedid	0.	de salida requerido: A, B	, υ
	300	8.6	580	NI CZ300	2640	a. Una Etapa	
	200	6.7	580	NI CZ200	2200	Y11-N245(*) 580	
Continuos Emission	150A	4.1	580	NI CZ15A	2000	Y11-244(*) 580	
Monitoring	80	2.6	580	NI CZ80	2200		A: 0-25
CEM	35	1.0	580	NI CZ35	2200	b. Dos Etapas	B: 0-50
	Certificado d	e análisis de lo	te incluido.			Y12-N245(*) 580	D: 0-100
	Cumple con 4	10 CFR Parte 7	2.2 para CEN	VI		Y12-244(*) 580	E: 0-150
	300	8.6	580	NI VE300	2640		F: 0-250
	200	6.7	580	NI VE200	2200		G:0-500**
	150A	4.1	580	NI VE15A	2000		
Vehicle Emissions Zero	80	2.6	580	NI VE80	2200		
	35	1.0	580	NI VE35	2200	(*) Nota: Aquí debe ingre	_
	Certificado d	e análisis de lo	te incluido.			de presión de salida requ D, E, F o G	ierido: A, B,
	Cumple con 4	10 CFR Parte 1	065.750			** Sólo reguladores de 1	etapa
	300	8.6	580	NI UPC300	2640	a. Una Etapa	
Carrier Ultra Puro	200	6.7	580	NI UPC200	2200	Y11-N245(*) 580	
UPC	80	2.6	580	NI UPC80	2200	Y11-244(*) 580	
010	35	1.0	580	NI UPC35	2200		A: 0-25
	Certificado d	e análisis indiv	idual o por l	otes a pedid	0.	b. Dos Etapas	B: 0-50
	300	8.6	580	NI UHP300	2640	Y12-N245(*) 580	D: 0-100
Ultra Alta Pureza	200	6.7	580	NI UHP200	2200	Y12-244(*) 580	E: 0-150
UHP	80	2.6	580	NI UHP80	2200		F: 0-250
	35	1.0	580	NI UHP35	2200]	G:0-500**
	Certificado d	e análisis indiv	idual o por l	otes a pedid	0.		
	300	8.6	580	NI Z300	2640		
	200	6.7	580	NI Z200	2200		
Cero	80	2.6	580	NI Z80	2200	(*) Nota: Aquí debe ingre	
	35	1.0	580	NI Z35	2200	de presión de salida requ D, E, F o G	ierido: A, B,
	Certificado d	e análisis indiv	idual o por l	otes a pedid	0.	** Sólo reguladores de 1	etapa
	300	8.6	580	NI HP300	2640	Reg. una Etapa	
	200	6.7	580	NI HP200	2200	Y11-N198J (CGA)†	0-2000
Alta Pureza	80	2.6	580	NI HP80	2200	Y11-N198K (CGA)†	0-4000
Alta Pureza Alta Presión	35	1.0	580	NI HP35	2200	Y11-820H	0-6000
7.11.0111111111111111111111111111111111	6K	13.6	677	NI HP6K	6000		
	3K	9.5	680	NI HP3K	3500	(†) Ingrese el rango	
	Certificado d	e análisis indiv	idual o por l	otes a pedid	0.	de presión de salida.	

⁽⁶⁾ Contamos con una amplia gama de posible suministro: cilindros de alta presión, dewars, MicroBulk y a granel. Consúltenos para ayudarlo a decidir qué opción es la mejor para su operación. Asegúrese de preguntar acerca de nuestra línea única de equipos de gases especiales, incluidos los sistemas de cambio automático para un suministro de gas

Comentarios

Gas inerte incoloro, inodoro, no inflamable, no corrosivo o un líquido criogénico incoloro, inodoro y no inflamable. Ligeramente más liviano que el aire.

Advertencias

Gas Asfixiante en altas concentraciones. Cilindros a alta presión. Substancia declarada como no peligrosa.

Propiedades físicas

Peso Molecular	0°C, 1 atm	0.97	g/mol
Densidad líquido	1 atm.	808.6	kg/m3
Densidad del gas	15°C, 1 atm	1.185	kg/m3
Densidad del gas	0°C, 1 atm	1.251	kg/m3
Punto Ebullición	1 atm.	-195.8	°C
Presión crítica		34	bar
Temperatura crítica		-146.95	°C
Presión de vapor	0°C	-	bar
	20°C	-	bar
Limite inflamabilidad	en aire	No inflamable	%Vol

Aplicaciones típicas

El nitrógeno se utiliza en grandes cantidades en la industria química para la protección, purga y transferencia de presión de productos químicos inflamables. El nitrógeno de alta pureza se utiliza en grandes cantidades en la industria de los semiconductores como gas de purga o portador, así como para equipos de protección, como hornos, cuando no están en producción, o bien como gas portador en la cromatografía de gases, como gas cero para instrumentos analíticos o como gas de equilibrio en mezclas. El nitrógeno se utiliza en la industria electrónica para la inertización de reactores epitaxiales, o en mezclas con dióxido de carbono para el envasado en atmósfera modificada (MAP) de alimentos. Ampliamente usado, ya sea puro o, más comúnmente, en una mezcla con un gas reductor como hidrógeno o gas natural, para proporcionar una atmósfera libre de oxígeno durante el tratamiento térmico de varios metales. Se utiliza también en el proceso de Haber Bosch para la producción de amoníaco, o como gas extintor de incendios en las minas. Se utiliza utiliza también para llenar los neumáticos para reducir el desgaste y limitar los riesgos de reventones. En estado líquido se utiliza en trampas frías para mejorar la eficiencia de las bombas de vacío al condensar o solidificar los gases residuales en el vacío. También se puede usar nitrógeno líquido para el ajuste por contracción de componentes de tolerancia estrecha, o para congelar una amplia variedad de alimentos delicados, como hamburguesas, fresas, camarones, etc., o bien para la trituración criogénica de plásticos, cauchos y algunos otros productos químicos, o en la industria nuclear para la investigación científica. El nitrógeno líquido se utiliza también para almacenar materiales biológicos como tejidos, células, etc., en criocirugías, o en el ámbito de la superconductividad. El nitrógeno se utiliza en cromatografía de espectrometría de masas en fase líquida.